
Package: cbcTools (via r-universe)
September 3, 2024

Title Choice-Based Conjoint Experiment Design Generation and Power
Evaluation in R

Version 0.5.2

Maintainer John Helveston <john.helveston@gmail.com>

Description Design and evaluate choice-based conjoint survey
experiments. Generate a variety of survey designs, including
random designs, full factorial designs, orthogonal designs,
D-optimal designs, and Bayesian D-efficient designs as well as
designs with ``no choice'' options and ``labeled'' (also known as
``alternative specific'') designs. Conveniently inspect the
design balance and overlap, and simulate choice data for a
survey design either randomly or according to a multinomial or
mixed logit utility model defined by user-provided prior
parameters. Conduct a power analysis for a given survey design
by estimating the same model on different subsets of the data
to simulate different sample sizes. Full factorial and
orthogonal designs are obtained using the 'DoE.base' package
(Grömping, 2018) <doi:10.18637/jss.v085.i05>. D-optimal designs
are obtained using the 'AlgDesign' package (Wheeler, 2022)
<https://CRAN.R-project.org/package=AlgDesign>. Bayesian
D-efficient designs are obtained using the 'idefix' package
(Traets et al, 2020) <doi:10.18637/jss.v096.i03>. Choice
simulation and model estimation in power analyses are handled
using the 'logitr' package (Helveston, 2023)
<doi:10.18637/jss.v105.i10>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

VignetteBuilder knitr

Depends R (>= 3.5.0)

Suggests here, knitr, testthat, tibble

1

https://doi.org/10.18637/jss.v085.i05
https://CRAN.R-project.org/package=AlgDesign
https://doi.org/10.18637/jss.v096.i03
https://doi.org/10.18637/jss.v105.i10

2 cbc_balance

Imports AlgDesign, DoE.base, fastDummies, ggplot2, idefix, logitr (>=
1.0.1), MASS, parallel, randtoolbox, rlang, stats, utils

URL https://github.com/jhelvy/cbcTools,

https://jhelvy.github.io/cbcTools/

BugReports https://github.com/jhelvy/cbcTools/issues

Repository https://jhelvy.r-universe.dev

RemoteUrl https://github.com/jhelvy/cbctools

RemoteRef HEAD

RemoteSha fb81dc4fd2a0dfdb0d9fc9de493764b91c3e4618

Contents
cbc_balance . 2
cbc_choices . 3
cbc_design . 5
cbc_overlap . 10
cbc_power . 11
cbc_profiles . 13
cbc_restrict . 14
miscmethods.cbc_errors . 15
miscmethods.cbc_models . 16
plot_compare_power . 17
randLN . 18
randN . 19

Index 20

cbc_balance Counts of attribute balance

Description

This function prints out a summary of the individual and pairwise counts of each level for each
attribute across all choice questions in the design.

Usage

cbc_balance(design)

Arguments

design A data frame of a survey design.

https://github.com/jhelvy/cbcTools
https://jhelvy.github.io/cbcTools/
https://github.com/jhelvy/cbcTools/issues

cbc_choices 3

Value

Prints the individual and pairwise counts of the number of times each attribute levels in shown in
the design.

Examples

library(cbcTools)

A simple conjoint experiment about apples

Generate all possible profiles
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Make a survey design from all possible profiles
(This is the default setting where method = 'full' for "full factorial")
design <- cbc_design(

profiles = profiles,
n_resp = 300, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

Inspect the design balance
cbc_balance(design)

Inspect the design overlap
cbc_overlap(design)

cbc_choices Simulate choices for a survey design

Description

Simulate choices for a survey design, either randomly or according to a utility model defined by
user-provided prior parameters. All choices are simulated using the ’logitr’ package. For more
details see the JSS article on the ’logitr’ package (Helveston, 2023).

Usage

cbc_choices(design, obsID = "obsID", priors = NULL, n_draws = 100)

4 cbc_choices

Arguments

design A data frame of a survey design.

obsID The name of the column in design that identifies each choice observation. De-
faults to "obsID".

priors A list of one or more prior parameters that define a prior (assumed) utility model
used to simulate choices for the survey data frame. If NULL (the default), choices
will be randomly assigned.

n_draws The number of Halton draws to use for simulated choices for mixed logit mod-
els. Defaults to 100.

Value

Returns the design data frame with an additional choice column identifying the simulated choices.

References

Helveston, J. P. (2023). logitr: Fast Estimation of Multinomial and Mixed Logit Models with
Preference Space and Willingness-to-Pay Space Utility Parameterizations. Journal of Statistical
Software, 105(10), 1–37, doi:10.18637/jss.v105.i10

Examples

library(cbcTools)

A simple conjoint experiment about apples

Generate all possible profiles
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Make a survey design from all possible profiles
(This is the default setting where method = 'full' for "full factorial")
design <- cbc_design(

profiles = profiles,
n_resp = 300, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

Simulate random choices
data <- cbc_choices(

design = design,
obsID = "obsID"

)

Simulate choices according to a prior utility model
data <- cbc_choices(

https://doi.org/10.18637/jss.v105.i10

cbc_design 5

design = design,
obsID = "obsID",
priors = list(

price = 0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2)

)
)

Simulate choices according to a prior model with interactions
data <- cbc_choices(

design = design,
obsID = "obsID",
priors = list(

price = 0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2),
`price*type` = c(0.1, 0.5)

)
)

Simulate choices according to a prior utility model with random parameters
data <- cbc_choices(

design = design,
obsID = "obsID",
priors = list(

price = 0.1,
type = randN(mean = c(0.1, 0.2), sd = c(1, 2)),
freshness = c(0.1, 0.2)

)
)

cbc_design Make a choice-based conjoint survey design

Description

This function creates a data frame containing a choice-based conjoint survey design where each row
is an alternative. Generate a variety of survey designs, including full factorial designs, orthogonal
designs, and Bayesian D-efficient designs as well as designs with "no choice" options and "labeled"
(also known as "alternative specific") designs.

Usage

cbc_design(
profiles,
n_resp,
n_alts,
n_q,

6 cbc_design

n_blocks = 1,
n_draws = 50,
n_start = 5,
no_choice = FALSE,
label = NULL,
method = "random",
priors = NULL,
prior_no_choice = NULL,
probs = FALSE,
keep_d_eff = FALSE,
keep_db_error = FALSE,
max_iter = 50,
parallel = FALSE

)

Arguments

profiles A data frame in which each row is a possible profile. This can be generated
using the cbc_profiles() function.

n_resp Number of survey respondents.

n_alts Number of alternatives per choice question.

n_q Number of questions per respondent.

n_blocks Number of blocks used in Orthogonal or Bayesian D-efficient designs. Max
allowable is one block per respondent. Defaults to 1, meaning every respondent
sees the same choice set.

n_draws Number of draws used in simulating the prior distribution used in Bayesian D-
efficient designs. Defaults to 50.

n_start A numeric value indicating the number of random start designs to use in ob-
taining a Bayesian D-efficient design. The default is 5. Increasing n_start can
result in a more efficient design at the expense of increased computational time.

no_choice Include a "no choice" option in the choice sets? Defaults to FALSE. If TRUE,
the total number of alternatives per question will be one more than the provided
n_alts argument.

label The name of the variable to use in a "labeled" design (also called an "alternative-
specific design") such that each set of alternatives contains one of each of the
levels in the label attribute. Currently not compatible with Bayesian D-efficient
designs. If used, the n_alts argument will be ignored as its value is defined by
the unique number of levels in the label variable. Defaults to NULL.

method Choose the design method to use: "random", "full", "orthogonal", "dopt",
"CEA", or "Modfed". Defaults to "random". See details below for complete
description of each method.

priors A list of one or more assumed prior parameters used to generate a Bayesian
D-efficient design. Defaults to NULL

prior_no_choice

Prior utility value for the "no choice" alternative. Only required if no_choice =
TRUE. Defaults to NULL.

cbc_design 7

probs If TRUE, for Bayesian D-efficient designs the resulting design includes average
predicted probabilities for each alternative in each choice set given the sample
from the prior preference distribution. Defaults to FALSE.’

keep_d_eff If TRUE, for D-optimal designs (method = "dopt") the returned object will be a
list containing the design and the D-efficiency score. Defaults to FALSE.

keep_db_error If TRUE, for Bayesian D-efficient designs the returned object will be a list con-
taining the design and the DB-error score. Defaults to FALSE.

max_iter A numeric value indicating the maximum number allowed iterations when search-
ing for a Bayesian D-efficient design. The default is 50.

parallel Logical value indicating whether computations should be done over multiple
cores. The default is FALSE.

Details

The method argument determines the design method used. Options are:

• "random"

• "full"

• "orthogonal"

• "dopt"

• "CEA"

• "Modfed"

All methods ensure that the two following criteria are met:

1. No two profiles are the same within any one choice set.
2. No two choice sets are the same within any one respondent.

The table below summarizes method compatibility with other design options, including the
ability to include a "no choice" option, the creation of a "labeled" design (also called a
"alternative-specific" design), the use of restricted profile, and the use of blocking.

Method Include "no choice"? Labeled designs? Restricted profiles? Blocking?
"random" Yes Yes Yes No
"full" Yes Yes Yes Yes
"orthogonal" Yes No No Yes
"dopt" Yes No Yes Yes
"CEA" Yes No No Yes
"Modfed" Yes No Yes Yes

The "random" method (the default) creates a design where choice sets are created by ran-
domly sampling from the full set of profiles *with *replacement. This means that few (if
any) respondents will see the same sets of choice sets. This method is less efficient than
other approaches and may lead to a deficient experiment in smaller sample sizes, though it
guarantees equal ability to estimate main and interaction effects.
The "full" method for ("full factorial") creates a design where choice sets are created by
randomly sampling from the full set of profiles without replacement. The choice sets are

8 cbc_design

then repeated to meet the desired number of survey respondents (determined by n_resp). If
blocking is used, choice set blocks are created using mutually exclusive subsets of profiles
within each block. This method produces a design with similar performance with that of
the "random" method, except the choice sets are repeated and thus there will be many more
opportunities for different respondents to see the same choice sets. This method is less efficient
than other approaches and may lead to a deficient experiment in smaller sample sizes, though
it guarantees equal ability to estimate main and interaction effects. For more information about
blocking with full factorial designs, see ?DoE.base::fac.design as well as the JSS article
on the DoE.base package (Grömping, 2018).
The "orthogonal" method creates a design where an orthogonal array from the full set of
profiles is found and then choice sets are created by randomly sampling from this orthogo-
nal array without replacement. The choice sets are then repeated to meet the desired number
of survey respondents (determined by n_resp). If blocking is used, choice set blocks are cre-
ated using mutually exclusive subsets of the orthogonal array within each block. For cases
where an orthogonal array cannot be found, a full factorial design is used. This approach is
also sometimes called a "main effects" design since orthogonal arrays focus the information
on the main effects at the expense of information about interaction effects. For more informa-
tion about orthogonal designs, see ?DoE.base::oa.design as well as the JSS article on the
DoE.base package (Grömping, 2018).
The "dopt" method creates a "D-optimal" design where an array from profiles is found
that maximizes the D-efficiency of a linear model using the Federov algorithm, with the total
number of unique choice sets determined by n_q*n_blocks. Choice sets are then created by
randomly sampling from this array without replacement. The choice sets are then repeated
to meet the desired number of survey respondents (determined by n_resp). If blocking is
used, choice set blocks are created from the D-optimal array. For more information about the
underlying algorithm for this method, see ?AlgDesign::optFederov.
The "CEA" and "Modfed" methods use the specified priors to create a Bayesian D-efficient
design for the choice sets, with the total number of unique choice sets determined by n_q*n_blocks.
The choice sets are then repeated to meet the desired number of survey respondents (deter-
mined by n_resp). If "CEA" or "Modfed" is used without specifying priors, a prior of all 0s
will be used and a warning message stating this will be shown. In the opposite case, if priors
are specified but neither Bayesian method is used, the "CEA" method will be used and a warn-
ing stating this will be shown. Restricted sets of profiles can only be used with "Modfed".
For more details on Bayesian D-efficient designs, see ?idefix::CEA and ?idefix::Modfed
as well as the JSS article on the idefix package (Traets et al, 2020).

Value

The returned design data frame contains a choice-based conjoint survey design where each row is
an alternative. It includes the following columns:

• profileID: Identifies the profile in profiles.

• respID: Identifies each survey respondent.

• qID: Identifies the choice question answered by the respondent.

• altID:Identifies the alternative in any one choice observation.

• obsID: Identifies each unique choice observation across all respondents.

• blockID: If blocking is used, identifies each unique block.

cbc_design 9

References

Grömping, U. (2018). R Package DoE.base for Factorial Experiments. Journal of Statistical Soft-
ware, 85(5), 1–41 doi:10.18637/jss.v085.i05

Traets, F., Sanchez, D. G., & Vandebroek, M. (2020). Generating Optimal Designs for Dis-
crete Choice Experiments in R: The idefix Package. Journal of Statistical Software, 96(3), 1–41,
doi:10.18637/jss.v096.i03

Wheeler B (2022)._AlgDesign: Algorithmic Experimental Design. R package version 1.2.1, https://CRAN.R-
project.org/package=AlgDesign.

Examples

library(cbcTools)

A simple conjoint experiment about apples

Generate all possible profiles
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Make a survey by randomly sampling from all possible profiles
(This is the default setting where method = 'random')
design_random <- cbc_design(

profiles = profiles,
n_resp = 100, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

Make a survey using a full factorial design and include a "no choice" option
design_full <- cbc_design(

profiles = profiles,
n_resp = 100, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6, # Number of questions per respondent
method = 'full', # Change this to use a different method, e.g. 'orthogonal', or 'dopt'
no_choice = TRUE

)

Make a survey by randomly sampling from all possible profiles
with each level of the "type" attribute appearing as an alternative
design_random_labeled <- cbc_design(

profiles = profiles,
n_resp = 100, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6, # Number of questions per respondent
label = "type"

)

https://doi.org/10.18637/jss.v085.i05
https://doi.org/10.18637/jss.v096.i03
https://CRAN.R-project.org/package=AlgDesign
https://CRAN.R-project.org/package=AlgDesign

10 cbc_overlap

Make a Bayesian D-efficient design with a prior model specified
Note that by speed can be improved by setting parallel = TRUE
design_bayesian <- cbc_design(

profiles = profiles,
n_resp = 100, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6, # Number of questions per respondent
n_start = 1, # Defaults to 5, set to 1 here for a quick example
priors = list(

price = -0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2)

),
method = "CEA",
parallel = FALSE

)

cbc_overlap Counts of attribute overlap

Description

This function prints out a summary of the amount of "overlap" across attributes within the choice
questions. For example, for each attribute, the count under "1" is the number of choice questions
in which the same level was shown across all alternatives for that attribute (because there was only
one level shown). Likewise, the count under "2" is the number of choice questions in which only
two unique levels of that attribute were shown, and so on.

Usage

cbc_overlap(design)

Arguments

design A data frame of a survey design.

Value

Prints the counts of the number of choice questions that contain the unique number of levels for
each attribute.

Examples

library(cbcTools)

A simple conjoint experiment about apples

Generate all possible profiles
profiles <- cbc_profiles(

cbc_power 11

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
freshness = c("Excellent", "Average", "Poor"),
type = c("Fuji", "Gala", "Honeycrisp")

)

Make a randomized survey design
design <- cbc_design(

profiles = profiles,
n_resp = 300, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

Inspect the design balance
cbc_balance(design)

Inspect the design overlap
cbc_overlap(design)

cbc_power Estimate the same model on different size subsets of data

Description

This function estimates the same model multiple times using different size subsets of a set of choice
data and then returns a data frame of the estimated model coefficients and standard errors for each
sample size. This is useful for determining the required sample size for obtaining a desired level
of statistical power on each coefficient. The number of models to estimate is set by the nbreaks
argument, which breaks up the data into groups of increasing sample sizes. All models are estimated
models using the ’logitr’ package. For more details see the JSS article on the ’logitr’ package
(Helveston, 2023).

Usage

cbc_power(
data,
outcome,
obsID,
pars,
randPars = NULL,
nbreaks = 10,
n_q = 1,
return_models = FALSE,
panelID = NULL,
clusterID = NULL,
robust = FALSE,
predict = FALSE,
n_cores = NULL,
...

)

12 cbc_power

Arguments

data The data, formatted as a data.frame object.

outcome The name of the column that identifies the outcome variable, which should be
coded with a 1 for TRUE and 0 for FALSE.

obsID The name of the column that identifies each observation.

pars The names of the parameters to be estimated in the model. Must be the same as
the column names in the data argument.

randPars A named vector whose names are the random parameters and values the distri-
bution: 'n' for normal or 'ln' for log-normal. Defaults to NULL.

nbreaks The number of different sample size groups.

n_q Number of questions per respondent. Defaults to 1 if not specified.

return_models If TRUE, a list of all estimated models is returned. This can be useful if you
want to extract other outputs from each model, such as the variance-covariance
matrix, etc. Defaults to FALSE.

panelID The name of the column that identifies the individual (for panel data where mul-
tiple observations are recorded for each individual). Defaults to NULL.

clusterID The name of the column that identifies the cluster groups to be used in model
estimation. Defaults to NULL.

robust Determines whether or not a robust covariance matrix is estimated. Defaults to
FALSE. Specification of a clusterID will override the user setting and set this to
‘TRUE’ (a warning will be displayed in this case). Replicates the functionality
of Stata’s cmcmmixlogit.

predict If TRUE, predicted probabilities, fitted values, and residuals are also included in
the returned model objects. Defaults to FALSE.

n_cores The number of cores to use for parallel processing. Set to 1 to run serially De-
faults to NULL, in which case the number of cores is set to parallel::detectCores()
- 1. Max cores allowed is capped at parallel::detectCores().

... Other arguments that are passed to logitr::logitr() for model estimation.
See the logitr documentation for details about other available arguments.

Value

Returns a data frame of estimated model coefficients and standard errors for the same model esti-
mated on subsets of the data with increasing sample sizes.

References

Helveston, J. P. (2023). logitr: Fast Estimation of Multinomial and Mixed Logit Models with
Preference Space and Willingness-to-Pay Space Utility Parameterizations. Journal of Statistical
Software, 105(10), 1–37, doi:10.18637/jss.v105.i10

https://doi.org/10.18637/jss.v105.i10

cbc_profiles 13

Examples

library(cbcTools)

A simple conjoint experiment about apples

Generate all possible profiles
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Make a survey design from all possible profiles
(This is the default setting where method = 'full' for "full factorial")
design <- cbc_design(

profiles = profiles,
n_resp = 300, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

Simulate random choices
data <- cbc_choices(

design = design,
obsID = "obsID"

)

Conduct a power analysis
power <- cbc_power(

data = data,
pars = c("price", "type", "freshness"),
outcome = "choice",
obsID = "obsID",
nbreaks = 10,
n_q = 6,
n_cores = 2

)

cbc_profiles Make a data frame of all combinations of attribute levels

Description

This function creates a data frame of of all possible combinations of attribute levels.

Usage

cbc_profiles(...)

14 cbc_restrict

Arguments

... Any number of named vectors defining each attribute and their levels, e.g. price
= c(1, 2, 3). Separate each vector by a comma.

Value

A data frame of all possible combinations of attribute levels.

Examples

library(cbcTools)

Generate all profiles for a simple conjoint experiment about apples
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

cbc_restrict Obtain a restricted set of profiles

Description

This function returns a restricted set of profiles as a data frame.

Usage

cbc_restrict(profiles, ...)

Arguments

profiles A data frame in which each row is a possible profile. This can be generated
using the cbc_profiles() function.

... Any number of restricted pairs of attribute levels, defined as pairs of logical
expressions separated by commas. For example, the restriction type == 'Fuji'
& freshness == 'Poor' will eliminate profiles such that "Fuji" type apples
will never be shown with "Poor" freshness.

Value

A restricted set of profiles as a data frame.

miscmethods.cbc_errors 15

Examples

library(cbcTools)

Generate all profiles for a simple conjoint experiment about apples
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Obtain a restricted subset of profiles based on pairs of logical
expressions. The example below contains the following restrictions:

- `"Gala"` apples will not be shown with the prices `1.5`, `2.5`, & `3.5`.
- `"Honeycrisp"` apples will not be shown with prices less than `2`.
- `"Honeycrisp"` apples will not be shown with the `"Poor"` freshness.
- `"Fuji"` apples will not be shown with the `"Excellent"` freshness.

profiles_restricted <- cbc_restrict(
profiles,
type == "Gala" & price %in% c(1.5, 2.5, 3.5),
type == "Honeycrisp" & price > 2,
type == "Honeycrisp" & freshness == "Poor",
type == "Fuji" & freshness == "Excellent"

)

miscmethods.cbc_errors

Methods for cbc_errors objects

Description

Miscellaneous methods for cbc_errors class objects.

Usage

S3 method for class 'cbc_errors'
plot(x, ...)

Arguments

x is an object of class cbc_errors.

... further arguments.

Value

Returns a ggplot2 object plotting standard errors versus sample size.

16 miscmethods.cbc_models

Examples

library(cbcTools)

A simple conjoint experiment about apples

Generate all possible profiles
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Make a survey design from all possible profiles
(This is the default setting where method = 'full' for "full factorial")
design <- cbc_design(

profiles = profiles,
n_resp = 300, # Number of respondents
n_alts = 3, # Number of alternatives per question
n_q = 6 # Number of questions per respondent

)

Simulate random choices
data <- cbc_choices(

design = design,
obsID = "obsID"

)

Conduct a power analysis
power <- cbc_power(

data = data,
pars = c("price", "type", "freshness"),
outcome = "choice",
obsID = "obsID",
nbreaks = 10,
n_q = 6

)

Visualize the results
plot(power)

miscmethods.cbc_models

Methods for cbc_models objects

Description

Miscellaneous methods for cbc_models class objects.

plot_compare_power 17

Usage

S3 method for class 'cbc_models'
print(
x,
digits = max(3, getOption("digits") - 2),
width = getOption("width"),
...

)

Arguments

x is an object of class cbc_models.

digits the number of digits for printing, defaults to 3.

width the width of the printing.

... further arguments.

Value

No return value, prints a summary of estimated models.

plot_compare_power Plot a comparison of different design powers

Description

This function creates a ggplot2 object comparing the power curves of different designs. Each design
is color coded and each facet (sub plot) is a model coefficient.

Usage

plot_compare_power(...)

Arguments

... Any number of data frame containing power results obtained from the cbc_power()
function, separated by commas.

Value

A plot comparing the power curves of different designs.

18 randLN

Examples

Not run:
library(cbcTools)

Generate all possible profiles
profiles <- cbc_profiles(

price = c(1, 1.5, 2, 2.5, 3),
type = c("Fuji", "Gala", "Honeycrisp"),
freshness = c('Poor', 'Average', 'Excellent')

)

Make designs to compare: full factorial vs bayesian d-efficient
design_random <- cbc_design(

profiles = profiles,
n_resp = 100, n_alts = 3, n_q = 6

)
Same priors will be used in bayesian design and simulated choices
priors <- list(

price = -0.1,
type = c(0.1, 0.2),
freshness = c(0.1, 0.2)

)
design_bayesian <- cbc_design(

profiles = profiles,
n_resp = 100, n_alts = 3, n_q = 6, n_start = 1, method = "CEA",
priors = priors, parallel = FALSE

)

Obtain power for each design by simulating choices
power_random <- design_random |>
cbc_choices(obsID = "obsID", priors = priors) |>

cbc_power(
pars = c("price", "type", "freshness"),
outcome = "choice", obsID = "obsID", nbreaks = 5, n_q = 6, n_cores = 2

)
power_bayesian <- design_bayesian |>

cbc_choices(obsID = "obsID", priors = priors) |>
cbc_power(

pars = c("price", "type", "freshness"),
outcome = "choice", obsID = "obsID", nbreaks = 5, n_q = 6, n_cores = 2

)

Compare power of each design
plot_compare_power(power_bayesian, power_random)

End(Not run)

randLN Define prior (assumed) model parameter as log-normally-distributed.

randN 19

Description

Define prior (assumed) model parameter as log-normally-distributed. Used in the cbc_choices()
function.

Usage

randLN(mean = 0, sd = 1)

Arguments

mean Mean of the distribution on the log scale, defaults to 0.

sd Standard deviation of the distribution on the log scale, defaults to 1.

Value

A list defining log-normally-distributed parameters of the prior (assumed) utility model used to
simulate choices in the cbc_choices() function.

Examples

Insert example

randN Define a prior (assumed) model parameter as normally-distributed.

Description

Define a prior (assumed) model parameter as normally-distributed. Used in the cbc_choices()
function.

Usage

randN(mean = 0, sd = 1)

Arguments

mean Vector of means, defaults to 0.

sd Vector of standard deviations, defaults to 1.

Value

A list defining normally-distributed parameters of the prior (assumed) utility model used to simulate
choices in the cbc_choices() function.

Examples

Insert example

Index

∗ DoE.base
cbc_design, 5

∗ balance
cbc_balance, 2

∗ design
cbc_design, 5

∗ experiment
cbc_design, 5

∗ idefix
cbc_design, 5

∗ logitr
cbc_balance, 2
cbc_choices, 3
cbc_design, 5
cbc_power, 11

∗ logit
cbc_balance, 2
cbc_choices, 3
cbc_design, 5
cbc_power, 11

∗ mixed
cbc_balance, 2
cbc_choices, 3
cbc_design, 5
cbc_power, 11

∗ mnl
cbc_balance, 2
cbc_choices, 3
cbc_design, 5
cbc_power, 11

∗ mxl
cbc_balance, 2
cbc_choices, 3
cbc_design, 5
cbc_power, 11

∗ overlap
cbc_balance, 2

∗ power
cbc_power, 11

∗ sample
cbc_power, 11

∗ simulation
cbc_choices, 3

∗ size
cbc_power, 11

cbc_balance, 2
cbc_choices, 3
cbc_design, 5
cbc_overlap, 10
cbc_power, 11
cbc_profiles, 13
cbc_restrict, 14

miscmethods.cbc_errors, 15
miscmethods.cbc_models, 16

plot.cbc_errors
(miscmethods.cbc_errors), 15

plot_compare_power, 17
print.cbc_models

(miscmethods.cbc_models), 16

randLN, 18
randN, 19

20

	cbc_balance
	cbc_choices
	cbc_design
	cbc_overlap
	cbc_power
	cbc_profiles
	cbc_restrict
	miscmethods.cbc_errors
	miscmethods.cbc_models
	plot_compare_power
	randLN
	randN
	Index

